Skip to main content

Advertisement

Log in

Comparative safety of high-efficacy disease-modifying therapies in relapsing–remitting multiple sclerosis: a systematic review and network meta-analysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

This study aimed to compare the safety profile of high-efficacy disease-modifying therapies (DMTs) natalizumab, fingolimod, alemtuzumab, cladribine, ocrelizumab, ofatumumab, ozanimod, as well as a potentially high-efficacy DMT, ponesimod, in adult patients with relapsing–remitting multiple sclerosis (RRMS).

Methods

A systematic review with frequentist network meta-analysis (NMA) was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We included randomized controlled trials (RCTs) with at least 48-week follow-up investigating the use of natalizumab, fingolimod, alemtuzumab, cladribine, ocrelizumab, ofatumumab, ozanimod, and ponesimod, as well as other DMTs, in adult patients with RRMS. Eligible studies were identified by two reviewers in MEDLINE (via PubMed), EMBASE, and Cochrane Library. The Cochrane Collaboration tool to assess the risk of bias for RCTs was used.

Results

A total of 33 RCTs were included in the systematic review and NMA. A higher rate of adverse events (AEs) was revealed for alemtuzumab versus all other high-efficacy DMTs; for alemtuzumab (average probability of an event: 98.2%) versus placebo (86.2%); for cladribine (3.5 mg; 90.5%) versus ozanimod (1 mg; 84.2%) and placebo; as well as for ocrelizumab (95.5%) versus ozanimod, ofatumumab (88.9%), fingolimod (87.4%), natalizumab (82.8%), and placebo. No significant differences were found between drugs in terms of serious AEs except for cladribine (3.5 mg, 17.3%) versus ocrelizumab (10.3%) and ofatumumab (16.6%) versus ocrelizumab. Significant differences in AEs leading to the discontinuation of study drug were found only for ponesimod (10.1%) versus alemtuzumab (12 mg, 3.0%) and placebo (4.2%). No differences were found in terms of upper respiratory tract infections, nasopharyngitis, fatigue, and nausea between individual high-efficacy DMTs as well as between DMTs and placebo. The results of the NMA indicated a higher risk of infections for alemtuzumab (12 mg) versus ocrelizumab, for cladribine (3.5 mg) versus ofatumumab and placebo, and for ofatumumab versus placebo. For serious infections and urinary tract infections, a significant increase was found only for alemtuzumab (12 mg) versus ocrelizumab, while no differences were found between the other DMTs or between DMTs and placebo. Headache was more common for alemtuzumab (12 mg) as compared with all the other high-efficacy DMTs and placebo, as well as for cladribine versus natalizumab and fingolimod versus natalizumab.

Conclusion

The commonly reported AEs are generally similar among high-efficacy DMTs. However, based on P scores for most analyzed endpoints, natalizumab and ocrelizumab were shown to be the safest DMTs. Considering the limitations of indirect comparisons, further research is needed to confirm our findings, preferably head-to-head RCTs and large observational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hauser SL, Cree BAC (2020) Treatment of multiple sclerosis: a review. Am J Med 133(12):1380-1390.e2. https://doi.org/10.1016/j.amjmed.2020.05.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Filippi M, Bar-Or A, Piehl F et al (2018)Multiple sclerosis. Nat Rev Dis Primers 4(43). https://doi.org/10.1038/s41572-018-0041-4

  3. Lublin FD (2014) New multiple sclerosis phenotypic classification. Eur Neurol 72(suppl 1):1–5. https://doi.org/10.1159/000367614

    Article  PubMed  Google Scholar 

  4. Walton C, King R, Rechtman L et al (2020) Rising prevalance of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler J 26(14):1816–1821. https://doi.org/10.1177/1352458520970841

  5. European Medicines Agency https://www.ema.europa.eu/en Accessed 1 Dec 2021

  6. United States Food and Drug Administration https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm Accessed 1 Dec 2021

  7. Ozanimod (Zeposia®) SmPC https://www.ema.europa.eu/en/documents/product-information/zeposia-epar-product-information_en.pdf Accessed 1 Dec 2021

  8. Ofatumumab (Kesimpta®) SmPC https://www.ema.europa.eu/en/documents/product-information/kesimpta-epar-product-information_en.pdf Accessed 1 Dec 2021

  9. Ponesimod (Ponvory®) SmPC https://www.ema.europa.eu/en/documents/product-information/ponvory-epar-product-information_en.pdf Accessed 1 Dec 2021

  10. Scolding N, Barnes D, Cader S et al (2015) Association of British Neutrologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract Neurol 15(4):273–279. https://doi.org/10.1136/practneurol-2015-001139

    Article  PubMed  Google Scholar 

  11. Inshasi JS, Almadani A, Al Fahad S (2020) High-efficacy therapies for relapsing-remitting multiple sclerosis: implications for adherence. An expert opinion from the United Arab Emirates. Neurodegener Dis Manag 10(4):257–266. https://doi.org/10.2217/nmt-2020-0016

    Article  PubMed  Google Scholar 

  12. Grand’Maison F, Yeung M, Morrow SA et al (2018) Sequencing of high-efficacy disease-modifying therapies in multiple sclerosis, perspectives and approaches. Neural Regen Res 13:1871–1874. https://doi.org/10.4103/1673-5374.239432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samjoo IA, Worthington E, Drudge C et al (2021) Efficacy classification of modern therapies in multiple sclerosis. J Comp Eff Res 10(6):495–507. https://doi.org/10.2217/cer-2020-0267

    Article  PubMed  Google Scholar 

  14. Rae-Grant A, Day GS, Marrie RA et al (2018) Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis. Neurology 90(17):777–788

    Article  Google Scholar 

  15. Montalban X, Gold R, Thompson AJ et al (2018) ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Eur J Neurol 25:215–237. https://doi.org/10.1111/ene.13536

    Article  CAS  PubMed  Google Scholar 

  16. Samjoo IA, Worthington E, Drudge C et al (2020) Comparison of ofatumumab and other disease-modifying therapies for relapsing multiple sclerosis: a network meta-analysis. J Comp Eff Res 9(18):1255–1274. https://doi.org/10.2217/cer-2020-0122

    Article  PubMed  Google Scholar 

  17. Liu Z, Liao Q, Wen H, Zhang Y (2021) Disease modifying therapies in relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. Autoimmun Rev 20(6):102826. https://doi.org/10.1016/j.autrev.2021.102826

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Hu F, Zhang Y, Li K (2020) Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol 267(12):3489–3498. https://doi.org/10.1007/s00415-019-09395-w

    Article  PubMed  Google Scholar 

  19. Lucchetta RC, Tonin FS, Borba HHL et al (2018) Disease-modifying therapies for relapsing-remitting multiple sclerosis: a network meta-analysis. CNS Drugs 32(9):813–826. https://doi.org/10.1007/s40263-018-0541-5

    Article  PubMed  Google Scholar 

  20. Giovannoni G, Lang S, Wolff R et al (2020) A systematic review and mixed treatment comparison of pharmaceutical interventions for multiple sclerosis. Neurol Ther 9(2):359–374. https://doi.org/10.1007/s40120-020-00212-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lucchetta RC, Leonart LP, Becker J et al (2019) Safety outcomes of disease-modifying therapies for relapsing-remitting multiple sclerosis: a network meta-analysis. Mult Scler Relat Disord 35:7–15. https://doi.org/10.1016/j.msard.2019.06.036

    Article  PubMed  Google Scholar 

  22. Hutton B, Salanti G, Caldwell DM et al (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analysis of health care interventions: checklist and explanations. Ann Intern Med 162(11):777–784. https://doi.org/10.7326/M14-2385

    Article  PubMed  Google Scholar 

  23. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jansen JP, Trikalinos T, Cappelleri JC et al (2014) Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making: an ISPOR- AMCP-NPC Good Practice Task Force report. Value Health 17(2):157–173. https://doi.org/10.1016/j.jval.2014.01.004

    Article  PubMed  Google Scholar 

  25. Cipriani A, Higgins JP, Geddes JR, Salanti G (2013) Conceptual and technical challenges in network meta-analysis. Ann Intern Med 159(2):130–137. https://doi.org/10.7326/0003-4819-159-2-201307160-00008

    Article  PubMed  Google Scholar 

  26. PROSPERO database https://www.crd.york.ac.uk/prospero/ Accessed Dec 2021

  27. Natalizumab (Tysabri®) SmPC https://www.ema.europa.eu/en/documents/product-information/tysabri-epar-product-information_en.pdf Accessed 1 Dec 2021

  28. Fingolimod (Gilanya®) SmPC https://www.ema.europa.eu/en/documents/product-information/gilenya-epar-product-information_en.pdf Accessed 1 Dec 2021

  29. Cladribine (Mavenclad®) SmPC https://www.ema.europa.eu/en/documents/product-information/mavenclad-epar-product-information_en.pdf Accessed 1 Dec 2021

  30. Alemtuzumab (Lemtrada®) SmPC https://www.ema.europa.eu/en/documents/product-information/lemtrada-epar-product-information_en-0.pdf Accessed 1 Dec 2021

  31. Ocrelizumab (Ocrevus®) SmPC https://www.ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf Accessed 1 Dec 2021

  32. Higgins JPT, Altman DS, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rücker G (2012) Network meta-analysis, electrical networks and graph theory. Res Synth Methods 3(4):312–324. https://doi.org/10.1002/jrsm.1058

    Article  PubMed  Google Scholar 

  34. Neupane B, Richer D, Bonner AJ et al (2014) Network meta-analysis using R: a review of currently available automated packages. PLoS ONE 9(12):e115065. https://doi.org/10.1371/journal.pone.0115065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freeman SC, Fisher D, White IR et al (2019) Identifying inconsistency in network meta-analysis: is the net heat plot a reliable method? Stat Med 38:5547–5564. https://doi.org/10.1002/sim.8383

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rücker G, Schwarzer G (2015) Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol 15:58

    Article  Google Scholar 

  37. Bhatnagar N, Lakshmi PV, Jeyashree K (2014) Multiple treatment and indirect treatment comparisons: an overview of network metaanalysis. Perspect Clin Res 5(4):154–158. https://doi.org/10.4103/2229-3485.140550

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mavridis D, Giannatsi M, Cipriani A, Salanti G (2015) A primer on network meta-analysis with emphasis on mental health. Evid Based Ment Health 18:40–46. https://doi.org/10.1136/eb-2015-102088

    Article  PubMed  Google Scholar 

  39. Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910. https://doi.org/10.1056/NEJMoa044397

    Article  CAS  PubMed  Google Scholar 

  40. https://clinicaltrials.gov/ct2/show/NCT00027300 Accessed 1 Dec 2021

  41. Hauser SL, Bar-Or A, Cohen JA et al (2020) Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med 383(6):546–557. https://doi.org/10.1056/NEJMoa1917246

    Article  CAS  PubMed  Google Scholar 

  42. https://clinicaltrials.gov/ct2/show/NCT02792218 Accessed 1 Dec 2021

  43. https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-005418-31/BE Accessed 1 Dec 2021

  44. https://clinicaltrials.gov/ct2/show/NCT02792231 Accessed 1 Dec 2021

  45. https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-005419-33/DE Accessed 1 Dec 2021

  46. Cree BAC, Goldman MD, Corboy JR et al (2020) Efficacy and safety of 2 fingolimod doses vs glatiramer acetate for the treatment of patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA Neurol 78(1):1–13. https://doi.org/10.1001/jamaneurol.2020.2950

    Article  PubMed Central  Google Scholar 

  47. https://clinicaltrials.gov/ct2/show/NCT01633112 Accessed 1 Dec 2021

  48. O’Connor P, Filippi M, Arnason B et al (2009) 250 μg or 500 μg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 8:889–897. https://doi.org/10.1016/S1474-4422(09)70226-1

    Article  CAS  PubMed  Google Scholar 

  49. http://ClinicalTrials.gov/show/NCT00099502 Accessed 1 Dec 2021

  50. Vollmer TL, Sorensen PS, Selmaj K et al (2014) A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol 261(4):773–783. https://doi.org/10.1007/s00415-014-7264-4

    Article  CAS  PubMed  Google Scholar 

  51. https://www.clinicaltrials.gov/ct2/show/NCT00605215 Accessed 1 Dec 2021

  52. https://www.clinicaltrialsregister.eu/ctr-search/trial/2007-005450-23/ES Accessed 1 Dec 2021

  53. CAMMS223 Trial Investigators (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359(17):1786–1801. https://doi.org/10.1056/NEJMoa0802670

  54. https://clinicaltrials.gov/ct2/show/NCT00050778 Accessed 1 Dec 2021

  55. Cohen JA, Coles AJ, Arnold DL et al (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380(9856):1819–1828. https://doi.org/10.1016/S0140-6736(12)61769-3

    Article  CAS  PubMed  Google Scholar 

  56. https://clinicaltrials.gov/ct2/show/NCT00530348 Accessed 1 Dec 2021

  57. https://www.clinicaltrialsregister.eu/ctr-search/trial/2007-001161-14/GB Accessed 1 Dec 2021

  58. Coles AJ, Twyman CL, Arnold DL et al (2012) Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380(9856):1829–1839. https://doi.org/10.1016/S0140-6736(12)61768-1

    Article  CAS  PubMed  Google Scholar 

  59. https://clinicaltrials.gov/ct2/show/NCT00548405 Accessed 1 Dec 2021

  60. https://www.clinicaltrialsregister.eu/ctr-search/trial/2007-001162-32/GB Accessed 1 Dec 2021

  61. Giovannoni G, Comi G, Cook S et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362(5):416–426. https://doi.org/10.1056/NEJMoa0902533

    Article  CAS  PubMed  Google Scholar 

  62. Cook S, Vermersch P, Comi G et al (2011) Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler 17(5):578–593. https://doi.org/10.1177/1352458510391344

    Article  CAS  PubMed  Google Scholar 

  63. https://clinicaltrials.gov/ct2/show/NCT00213135 Accessed 1 Dec 2021

  64. Johnson KP, Brooks BR, Cohen JA et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 45(7):1268–1276. https://doi.org/10.1212/wnl.45.7.1268

    Article  CAS  PubMed  Google Scholar 

  65. Lublin FD, Cofield SS, Cutter GR et al (2013) Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann Neurol 73(3):327–340. https://doi.org/10.1002/ana.23863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lindsey J, Scott T, Lynch S et al (2012) The CombiRx trial of combined therapy with interferon and glatiramer cetate in relapsing remitting MS: design and baseline characteristics. Mult Scler Relat Disord 1:81–86. https://doi.org/10.1016/j.msard.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. https://clinicaltrials.gov/ct2/show/NCT00211887 Accessed 1 Dec 2021

  68. Fox RJ, Miller DH, Phillips JT et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367(12):1087–1097. https://doi.org/10.1056/NEJMoa1206328

    Article  CAS  PubMed  Google Scholar 

  69. https://clinicaltrials.gov/ct2/show/results/NCT00451451 Accessed 1 Dec 2021

  70. https://www.clinicaltrialsregister.eu/ctr-search/trial/2006-003697-10/CZ Accessed 1 Dec 2021

  71. Gold R, Kappos L, Arnold DL, Bar-Or A et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107. https://doi.org/10.1056/NEJMoa1114287

    Article  CAS  PubMed  Google Scholar 

  72. https://clinicaltrials.gov/ct2/show/NCT00420212 Accessed 1 Dec 2021

  73. Panitch H, Goodin DS, Francis G et al (2002) Randomized, comparative study of interferon beta-1a treatment regimens in MS: the EVIDENCE trial. Neurology 59(10):1496–1506. https://doi.org/10.1212/01.wnl.0000034080.43681.da

  74. https://www.clinicaltrials.gov/ct2/show/NCT00292266 Accessed 1 Dec 2021

  75. Kappos L, Radue E-W, O’Connor P et al (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401. https://doi.org/10.1056/NEJMoa0909494

    Article  CAS  PubMed  Google Scholar 

  76. https://clinicaltrials.gov/ct2/show/NCT00289978 Accessed 1 Dec 2021

  77. Calabresi PA, Radue E-W, Goodin D et al (2014) Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo controlled, phase 3 trial. Lancet Neurol 13(6):545–556. https://doi.org/10.1016/S1474-4422(14)70049-3

    Article  CAS  PubMed  Google Scholar 

  78. https://clinicaltrials.gov/ct2/show/NCT00355134 Accessed 1 Dec 2021

  79. Khan O, Rieckmann P, Boyko A et al (2013) Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 73:705–713. https://doi.org/10.1002/ana.23938

    Article  CAS  PubMed  Google Scholar 

  80. https://clinicaltrials.gov/ct2/show/NCT01067521?term=Gala&cond=Multiple+Sclerosis&draw=2&rank=1 Accessed 1 Dec 2021

  81. https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-018084-27/results Accessed 1 Dec 2021

  82. Durelli L, Verdun E, Barbero P et al (2002) Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet (London, England) 359:1453–1460. https://doi.org/10.1016/s0140-6736(02)08430-1

    Article  CAS  Google Scholar 

  83. Calabresi PA, Kieseier BC, Arnold DL et al (2014) Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 13(7):657–665. https://doi.org/10.1016/S1474-4422(14)70068-7

    Article  CAS  PubMed  Google Scholar 

  84. https://clinicaltrials.gov/ct2/show/NCT00906399 Accessed 1 Dec 2021

  85. https://www.clinicaltrialsregister.eu/ctr-search/trial/2008-006333-27/LV Accessed 1 Dec 2021

  86. IFNB Multiple Sclerosis Study Group (1993) Interferon beta‐1b is effective in relapsing‐remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double‐blind, placebo-controlled trial. Neurology 43(4):655–661. https://doi.org/10.1212/wnl.43.4.655

  87. Jacobs LD, Cookfair DL, Rudick RA et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 39(3):285–294. https://doi.org/10.1002/ana.410390304

    Article  CAS  PubMed  Google Scholar 

  88. Hauser SL, Bar-Or A, Comi G et al (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234. https://doi.org/10.1056/NEJMoa1601277

    Article  CAS  PubMed  Google Scholar 

  89. https://clinicaltrials.gov/ct2/show/NCT01247324 Accessed 1 Dec 2021

  90. https://clinicaltrials.gov/ct2/show/NCT01412333 Accessed 1 Dec 2021

  91. https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-020315-36/SK Accessed 1 Dec 2021

  92. https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-020337-99/GB Accessed 1 Dec 2021

  93. Kappos L, Fox RJ, Burcklen M et al (2021) Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study: a randomized clinical trial. JAMA Neurol 78(5):558–567. https://doi.org/10.1001/jamaneurol.2021.0405

    Article  PubMed  Google Scholar 

  94. https://clinicaltrials.gov/ct2/show/NCT02425644 Accessed 1 Dec 2021

  95. https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-000540-10/DE Accessed 1 Dec 2021

  96. Ebers GC, PRISMS Study Group (1998) Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 352(9139):1498–1504. https://doi.org/10.1016/S0140-6736(98)03334-0

    Article  CAS  Google Scholar 

  97. Cohen JA, Comi G, Selmaj KW et al (2019) Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, Phase III trial. Lancet Neurol 18(11):1021–1033. https://doi.org/10.1016/S1474-4422(19)30238-8

    Article  CAS  PubMed  Google Scholar 

  98. https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-002714-40/IT Accessed 1 Dec 2021

  99. https://clinicaltrials.gov/ct2/show/NCT02047734 Accessed 1 Dec 2021

  100. Mikol DD, Barkhof F, Chang P et al (2008) Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 7(10):903–914. https://doi.org/10.1016/S1474-4422(08)70200-X

    Article  CAS  PubMed  Google Scholar 

  101. https://www.clinicaltrials.gov/ct2/show/NCT00078338 Accessed 1 Dec 2021

  102. Comi G, Kappos L, Selmaj KW et al (2019) Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, Phase III trial. Lancet Neurol 18(11):1009–1020. https://doi.org/10.1016/S1474-4422(19)30239-X

    Article  CAS  PubMed  Google Scholar 

  103. https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-002320-27/EE Accessed 1 Dec 2021

  104. https://clinicaltrials.gov/ct2/show/NCT02294058 Accessed 1 Dec 2021

  105. O’Connor P, Wolinsky JS, Confavreux C et al (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365(14):1293–1303. https://doi.org/10.1056/NEJMoa1014656

    Article  PubMed  Google Scholar 

  106. https://clinicaltrials.gov/ct2/show/NCT00134563 Accessed 1 Dec 2021

  107. https://www.clinicaltrialsregister.eu/ctr-search/trial/2004-000555-42/NO Accessed 1 Dec 2021

  108. Vermersch P, Czlonkowska A, Grimaldi LM et al (2014) Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler 20(6):705–716. https://doi.org/10.1177/1352458513507821

    Article  CAS  PubMed  Google Scholar 

  109. https://clinicaltrials.gov/ct2/show/NCT00883337 Accessed 1 Dec 2021

  110. https://www.clinicaltrialsregister.eu/ctr-search/trial/2008-006226-34/ES Accessed 1 Dec 2021

  111. Confavreux C, O’Connor P, Comi G et al (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13(3):247–256. https://doi.org/10.1016/S1474-4422(13)70308-9

    Article  CAS  PubMed  Google Scholar 

  112. https://clinicaltrials.gov/ct2/show/NCT00751881 Accessed 1 Dec 2021

  113. https://www.clinicaltrialsregister.eu/ctr-search/trial/2007-004452-36/GB Accessed 1 Dec 2021

  114. Cohen JA, Barkhof F, Comi G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362(5):402–415. https://doi.org/10.1056/NEJMoa0907839

    Article  CAS  PubMed  Google Scholar 

  115. https://clinicaltrials.gov/ct2/show/NCT00340834 Accessed 1 Dec 2021

  116. Nelson RE, Xie Y, DuVall S et al (2015) Multiple sclerosis and risk of infection-related hospitalization and death in US veterans. Int J MS Care 17(5):221–230. https://doi.org/10.7224/1537-2073.2014-035

    Article  PubMed  PubMed Central  Google Scholar 

  117. Castelo-Branco A, Chiesa F, Conte S et al (2020) Infections in patients with multiple sclerosis: a national cohort study in Sweden. Mult Scler Relat Disord 45:102420. https://doi.org/10.1016/j.msard.2020.102420

    Article  PubMed  Google Scholar 

  118. Guarnera C, Bramanti P, Mazzon E (2017) Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther Clin Risk Manag 13:871–879. https://doi.org/10.2147/TCRM.S134398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vukusic S, Rollot F, Casey R (2020) Progressive multifocal leukoencephalopathy incidence and risk stratification among natalizumab users in France. JAMA Neurol 77(1):94–102. https://doi.org/10.1001/jamaneurol.2019.2670

    Article  PubMed  Google Scholar 

  120. Klotz L, Havla J, Schwab et al (2019) Risks and risk management in modern multiple sclerosis immunotherapeutic treatment. Ther Adv Neurol Disord 12:1–31

    Article  Google Scholar 

Download references

Funding

The study was financed within a Jagiellonian University grant number N43/DBS/000099.

Author information

Authors and Affiliations

Authors

Contributions

PK, KS, and PH conceived the conception and design of the study; KS and OO performed the systematic review and the data extraction; PH conducted the network meta-analysis, validated the models, and visualized the results; KS, OO, and PH drafted the manuscript; PK critically revised and edited the manuscript. All authors approved the final version submitted for publication.

Corresponding author

Correspondence to Paweł Kawalec.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 495 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śladowska, K., Kawalec, P., Holko, P. et al. Comparative safety of high-efficacy disease-modifying therapies in relapsing–remitting multiple sclerosis: a systematic review and network meta-analysis. Neurol Sci 43, 5479–5500 (2022). https://doi.org/10.1007/s10072-022-06197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06197-3

Keywords

Navigation